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1.4 Representation Theory

In the previous section, we looked around the group manifold. The theory of Lie groups is
a very interesting subject but it is only meaningful through the representation of Lie groups
(and algebra) in most case of the physics.
In this section, I will focus on the representation of semisimple Lie algebra in most case
since they are well-classified and the most important Lie algebras in physics are usually
semisimple (We will show the definition of it soon. Don’t panic!). However, the Poincaré
group, another important Lie group in the physics, is not a semisimple Lie group. For this
reason, I will also discuss about representation of Poincaré algebra. Finally, I will cover
the Young diagram of so(N) representation which give intuitions on the symmetry of the
system (e.g., mixed symmetric field).
This section is primarily based on Dr. Thomas Basile’s lecture on the representation of
semisimple Lie algebras in 2019 at KHU, and also I referred other literature [3–6].

1.4.1 Structure of Representation Theory

Before discussing the construction of a representation of a Lie algebra, it is necessary to
address the representations itself as our primary subject. We begin with the definition.

Definition | Representation of a Lie Algebra

Let g is a Lie algebra, and V is a C-vector space. Then, a representation ⇢ of g on V is
an endomorphism

⇢ : g ! End(V )

X 7! ⇢(X) ,
(1.4.1)

which should preserves the Lie bracket as a commutator relation

⇢(X)⇢(Y )� ⇢(Y )⇢(X) = ⇢(JX,Y Kg) , (1.4.2)

for all X, Y 2 g

Note that the complex vector space V , on which the representation ⇢ actsm is called
a g-module, and the dimension of the g-module is simply referred to as the dimension
(or degree) of the representation. Sometimes, V is referred to as a representation in the
physics contexts, but in this section, I will distinguish two terminologies.
The first example is the trivial representation. If ⇢ maps all X 2 g to 1, then it might satisfy
all definitions of a representation. In most cases, we demand for distinguishing different
Lie algebra elements through the representation. This implies that only injective maps
⇢, called as faithful representations, are interesting representations in the physics. In
contrast, if the map ⇢ is not injective, then it is referred as an unfaithful representation.
If V contains an invariant subspace W , such that ⇢(X)w 2 W , 8X 2 g, for w 2 W , then ⇢

is called a reducible representation. Conversely, if V contains no invariant subspace, then
⇢ is called an irreducible representation. Our focus will be on faithful and irreducible
representations unless otherwise specified.
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One example of a representation —and of course, there are many!— is the Heisenberg
algebra, denoted as heis3. The Heisenberg algebra is spanned by three generators, x , y ,
and z, which satisfy the Lie algebra relation,

[x , z] = [y , z] = 0 , [x , y] = z . (1.4.3)

We can consider a representation of heis3 as follows:

⇢(x) = a , ⇢(y) = a† , ⇢(z) = 1 , (1.4.4)

where a and a† are the annihilation and creation operator, respectively, in quantum har-
monic oscillator, and their multiplication is defined by the commutator relation,

[a , a†] = 1 . (1.4.5)

One important representation is the adjoint representation, denoted by adX . The adjoint
representation is defined as adX = [X , ·], so its module is g itself, and the dimension of
ad is same as that of g. Let t↵ be the generator of a certain Lie algebra g, such that

[t↵ , t� ] = f↵�
� t� , (1.4.6)

and consider the adt↵ action on another generator, namely t�,

adt↵ t� = D(t↵)�
� t� , (1.4.7)

where D is a linear map corresponding to the adX . Since the adjoint representation acts
as a Lie algebra (1.4.6), we find

D(t↵)�
� = f↵�

� . (1.4.8)

Let us consider an example of Lie algebra so(3) ' su(2) ' sl(2), which is spanned by the
generators �i satisfying

[�i ,�j ] = ✏ij
k �k . (1.4.9)

In the quantum mechanics, we have chosen a two-dimensional su(2)-module, denoted by
|±i, to find a two-dimensional representation, namely, the Pauli matrices. If we choose the
su(2) algebra as the module, then (ad�i)j

k should be expressed by ✏ijk. For instance, ad�1

in the matrix form is given by

ad�1 =

0

B@
0 0 0

0 0 �1

0 1 0

1

CA . (1.4.10)

Remark that adjoint representations play crucial roles in physics. as all gauge bosons
are adjoint representation of their gauge groups. For instance, gluon fields are adjoint
representation of SU(3), which accounts for the existence of eight gluon fields.

Later, we will focus on the (semi)simple Lie algebras. To define the (semi)simplicity of a
Lie algebra, it is necessary to define the ideal subalgebra
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Definition | Ideal subalgebra

i ⇢ g is called an ideal subalgebra if

[X ,Y ] 2 i (1.4.11)

for all X 2 g and Y 2 i.

One probably notice that the sets {0} and g must be ideal subalgebras of g. However, they
are trivial, and a proper ideal is one that is not trivial. One simple example is algebras
which consist of upper triangular matrices. Let t(n) be a Lie algebra consisting of upper
triangular n ⇥ n matrices with matrix commutator, and t̄(n) be a Lie algebras with strictly
upper triangular n ⇥ n matrices, then one can show that t̄(n) is an ideal subalgebra of
t(n). An interesting feature of t̄(n) is that for any A 2 t̄(n), An is the zero matrix, indicating
that A is a nilpotent matrix. Related to this example, we define nilpotent and solvable Lie
algebras.

Definition | Nilpotent & solvable Lie algebra

First, we define a (kth ) derived series, denoted g(k). The derived series is iteratively de-
fined as

g(k) = [g(k�1) , g(k�1)] , g(0) = g . (1.4.12)

Additionally, (kth ) lower central series, denoted g(k), isdefinedas:

g(k) = [g , g(k�1)] , g(0) = g . (1.4.13)

If g(n) = 0 for some n 2 N, the g is called solvable.
Similarly, if g(n) = 0 for some n 2 N, then g is called nilpotent.

The Heisenberg algebra heis1 provides a good intuition to us for solvability and nilpotency
of the Lie algebra. Using the relation of heis1 in (1.4.3), we find the derived series

g(1) = {z} , g(2) = {0} , . . . , (1.4.14)

and the lower central series,
g(1) = {0} , . . . . (1.4.15)

We find that heis1 is both solvable and nilpotent. Actually, this is related to Engel’s theorem
and Lie’s theorem. Here, we introduce statements of two theorems without proof.

Theorem | Engel’s theorem

Any nilpotent Lie algebra is ad-nilpotent, that is, its adjoint representation is composed of
nilpotent matrices.
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Theorem | Lie’s theorem

Let g be a solvable Lie algebra and (V , ⇢) is a finite dimensional representation of g the
all ⇢(X) are upper triangular matrices in some basis.

Now, we define (semi)simpe Lie algebras:

Definition | Simple/Semisimple Lie algebra

g is simple if it contains no proper ideals.
g is semisimple if it has no abelian ideals.

An alternative version of definition of semisimple Lie algebra is as the direct sum of sim-
ple algebras. For example, so(n) are simple Lie algebra unless n = 4, and so(4) is a
semisimple Lie algebra since it can be given as the direct sum of two so(3).
Note that a semisimple algebra has no centre by definition 1, so the adjoint representation
of a semisimple Lie algebra is faithful. But why semisimple Lie algebras are crucial? This is
because both these Lie algebras and their representations are well-classified. Also, most
of the important Lie algebras in physics are (semi)simple. One exception is the Poincaré
algebra iso(1, d � 1). Even though it is one of the most important Lie algebras, it is not a
semisimple one.
Another reason for the importance of semisimplicity is provided by Levi-Malcev decom-
position. Any finite-dimensional Lie algebra g can be decomposed into a semi-direct sum
of a solvable piece, denoted R (called radical) and a simple piece, denoted S. That is,

g = S A� R , (1.4.16)

where A is the semi-direct sum between S and R, and (R,�) is a representation of S. In
this case, for any x 2 g, it is expressed as x = xS +xR where xS 2 S and xR 2 R, and the
Lie bracket between any x , y 2 g is given as

[x , y]g = [xS , yS ] + [xR , yR] + �(xS)yR � �(yS)xR . (1.4.17)

Note that if the Lie bracket consists only of the first two terms, then g = S � R. Another
remark is that � is a derivation for [· , ·]S , that is, �(xS) is acting on the Lie bracket of
radicals as

�(xS)[y , z]R = [�(xS) y , z]R + [y ,�(xS) z]R . (1.4.18)

A crucial example of the Levi-Malcev decomposition is the Poincaré group ISO(1, d� 1).
The Poincaré group is given by

ISO(1, d� 1) = SO(1, d� 1)n R1 ,d�1 (1.4.19)

where SO(1, d � 1) is called the Lorentz group, R1 ,d�1 is called the translation, and n
is called a semi-direct product. When we denote an element of ISO(1, d � 1) as (⇤ , a),

1The definition of centre X is that [X,Y ] = 0 for all Y 2 g.
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where ⇤ corresponds to the Lorentz and a corresponds to the translation element, the the
multiplication rule between two group elements is given by

(⇤ , a) · (⇤0 , b) = (⇤ · ⇤0 ,⇤ b+ a) . (1.4.20)

This multiplication rule implies that so(1, d� 1) is the solvable part and R is corresponding
to the radical part of the Poincaré algebra iso(1, d � 1). From (1.4.17), we can derive the
Lie bracket relation for iso(1, d� 1)

[xS , yS ] ! [Mab ,Mcd] = i(⌘bcMab + . . .) ,

[xR , yR] ! [Pa , Pb] = 0 ,

�(xS)yR ! [Mab , Pc] = i(⌘cb Pa � ⌘ca Pb) .

(1.4.21)

From the Lie brackets, the adjoint representation of Mab is given as

adMab =

0

BBBBBBB@

M.. 0

0 �vect

1

CCCCCCCA

, (1.4.22)

where M block is a 1
2d(d � 1)-dimensional square matrix and �vect is a d-dim. square

matrix. On the other hand, the adjoint representation of Pc is given as

adPc =

0

BBBBBBB@

0 0

�0 0

1

CCCCCCCA

. (1.4.23)

This implies that adjoint representation is a trivial representation on M .

Now, we will introduce an important quantity for the semisimple groups: Killing form.

Definition | Killing form of Lie algrbra

A Killing form  is a map between direct product of identical Lie algebras and complex
number

 : g ⇥ g ! C , (1.4.24)

such that,
(x , y) = Tr(adX · adY ) , (1.4.25)

where · denotes a matrix multiplication.
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One property of the Killing form is that it is an ad-invariant quantity, namely,

([x , y] , z) = (x , [y , z]) . (1.4.26)

From the definition of the Killing form, one can identify the Killing form of two generators
are given as a multiplication of structure constants so that it is a symmetric matrix:

(Ta , Tb) = ab = fac
d fbd

c . (1.4.27)

We will look at two Cartan’s criterion related to the Killing form. The first one is the Cartan
criterion for solvability and its statement is following: g is solvable if and only if (g , [g , g]) =
0, or equivalently (x , y) = 0 for all x 2 g and y 2 g(1).
Another criterion is the Cartan’s criterion for semisimplicity: g is semisimple if and only if 
is non-degenerate, that is, �1 is exists. One equivalent statement is that if (x , y) = 0 for
fixed x and for all y 2 g, and if g is a semisimple Lie algebra, then x = 0.

1.4.2 The Three Examples: su(2), su(3) and so(N)

Very first example of the representation theory of simple Lie algebra is the angular momen-
tum problem in the quantum mechanics. Angular momentum operators can be considered
as so(3) operators 2 spanned by three generators {Jx , Jy , Jz} which fulfill commutator
relation [Ji , Jj ] = "ijkJk where "ijk is the Levi-Civita symbol. Since they are not commut-
ing each other, so we choose a special direction among them (e.g. Jz) and combine two
remaining generators linearly into ladder operator (e.g. J± = Jx ± iJy).
The main strategy is this: We consider one-dimensional eigenspace with respect to the
chosen operator Jz where the eigenstates are labeled by two quantum numbers |j , mi.
Then we define the highest state |j, ji as J+ |j, ji = 0 and we find all other 2j + 1 states
by acting J� operator iteratively.
In summary, we could investigate the angular momentum states (or so(3) representa-
tions) from (1) choosing reference direction and operators (called Cartan subalgebra), (2)
finding suitable linear combination between remaining operators for ladder operator, (3)
finding the state vanishing by raising operator J+ (called highest-weight representation)
and (4) acting lowering operator J� repeatedly.

Second example is —even though it is quite general— so(d) algebra case.

[Mab,Mcd] = i(�acMbd � �adMbc � �bcMad + �bdMac) , (1.4.28)

Similar to the so(2) case, we consider some generators which will be referred as Cartan
generators,

HI = M2I�1 2I , (1.4.29)

2Here, I will discuss about orbital angular momentum states. In the algebra level, su(2) is identical to the
so(3) but in the group level, they are different. That is why su(2) algebra admits half-integer representations.
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where I = 1 , · · · , r for r = [d/2] called the rank of the group. Also, we define another two
kinds of generators E±

IJ
and F±

IJ

E±
IJ

= �
i

2

�
M2I�1 2J�1 ⌥ iM2I�1 2J � iM2I 2J�1 ⌥M2I 2J

�
,

F±
IJ

=
i

2

�
M2I�1 2J�1 +±iM2I�1 2J + iM2I 2J�1 �⌥M2I 2J

�
.

(1.4.30)

When d is odd, then there are r more E and F generators:

EK = M2K�1 d � iM2K d ,

FK = M2K�1 d + iM2K d .
(1.4.31)

In this construction, we can rephrase Lie brackets (1.4.28) in terms of H, E, and F

[HI , E
±
JK

] = (�IJ ± �IK)E±
JK

, [HI , EK ] = �IKEK ,

[HI , J
±
JK

] = �(�IJ ± �IK)F±
JK

, [HI , JK ] = ��IKFK ,

[HI , HJ ] = 0 .

(1.4.32)

As following nomenclature in the so(3) case, I will call E and F as raising and lowering
operators, respectively. When you observe the Lie bracket between H and, E (or F ),
then you can find that result is proportional to E (or F ), that indicates that E (or F ) are
eigenvectors of H, with some corresponding eigenvalues. For each generator, we can
assign a r-component vector ↵ whose components are given as eigenvalues of generator,
and these vectors are called root vectors.
Finally, I will rephrase and develope former discussions with another Lie algebra su(3).
su(3) algebra is spanned by Gell-Mann matrices.

�1 =

0

B@
0 1 0

1 0 0

0 0 0

1

CA , �2 =

0

B@
0 �i 0

i 0 0

0 0 0

1

CA , �3 =

0

B@
1 0 0

0 �1 0

0 0 0

1

CA ,

�4 =

0

B@
0 0 1

0 0 0

1 0 0

1

CA , �5 =

0

B@
0 0 �i

0 0 0

i 0 0

1

CA , �6 =

0

B@
0 0 0

0 0 1

0 1 0

1

CA ,

�7 =

0

B@
0 0 0

0 0 �i

0 i 0

1

CA , �8 =
1
p
3

0

B@
1 0 0

0 1 0

0 0 �2

1

CA .

(1.4.33)

Gell-Mann matrices are Hermitian matrices satisfying

�i �j =
2

3
�ij +

8X

k=1

(dijk + ifijk)�k , (1.4.34)

where dijk is symmetric tensor and their non-vanishing components are

d118 = d228 = d338 = �d888 = �2d448 = �2d558 = �2d668 = �2d778 =
1
p
3

d146 = d157 = d256 = d344 = d355 = �d247 = �d366 = �d377 =
1

2

(1.4.35)
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and fijk is anti-symmetric tensor and their non-vanishing components are

f147 = f246 = f345 = f257 = �f156 = �f367 =
1

2
f123 =

1
p
3
f458 =

1
p
3
f678 =

1

2
(1.4.36)

Let Ti ⌘
1
2�i be three-dimensional representation of su(3) generators then they satisfy

commutation and anti-commutation relations

[Ti , Tj ] = i
8X

k=1

fijkTk , {Ti , Tj} =
1

3
�ij +

8X

k=1

dijkTk . (1.4.37)

Now we will classify these generators as we did in the previous case. First, we find two
Cartan generators

H1 ⌘ T3 =
1

2
�3 , H2 = T8 =

1

2
�8 , (1.4.38)

then three raising operators Ei=1,2,3 and lowering operators Fi=1,2,3 are given as

E1 = T1 + iT2 , E2 = T4 + iT5 , E3 = T6 + iT7 ,

F1 = T1 � iT2 , E2 = T4 � iT5 , E3 = T6 � iT7 .
(1.4.39)

From the construction (1.4.38) and (1.4.39), we can rewrite su(3) algebra in (1.4.37) as

[H1, E1] = E1 , [H1 , E2] =
1

2
E2 , [H1 , E3] = �

1

2
E3 ,

[H2 , E1] = 0 , [H2 , E2] =

p
3

2
E2 , [H2 , E3] =

p
3

2
E3

(1.4.40)

[E1, F1] = 2H1 , [E2, F2] = 2

 
1

2
H1 +

p
3

2
H2

!
, [E3, F3] = 2

 
�
1

2
H1 +

p
3

2
H2

!
,

(1.4.41)
and

[E1, E3] = E2 , [F1, E2] = E3 , [F3, E2] = �E1 (1.4.42)

They are all non-vanishing commutation relations except some cases with Fi but one
can find easily by taking Hermitian conjugation with E†

i
= Fi. Note that H1 and H2 are

commuting each other, that is, they are forming abelian subalgebra.
When one looks (1.4.40) carefully, one can find that Ej (or Fj) is an eigenvector of [Ha, · ]

operator with an eigenvalue. Let ↵ is a two-component vector whose values are deter-
mined as the eigenvalue, then each generator is associated to a distinct ↵, namely

E1 $ ↵1 = (1, 0) , E2 $ ↵2 = (12 ,
p
3
2 ) , E3 $ ↵3 = (�1

2 ,
p
3
2 ) , (1.4.43)

and Fi are associated to �↵i. We call ↵i as a root vector . One can observe that commu-
tator relation between E and F (1.4.41), the result is a linear combination between Cartan
generators and their components are equivalent to root vectors’.
Another observation is that we can guess the results of commutator relation from the root
vector. For instance, [E1, E3] = E2 case, one can find that ↵1 + ↵3 = (12 ,

p
3
2 ) = ↵2. On the
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other hands, for [E1, E2], ↵1 + ↵2 = (32 ,
p
3
2 ) and it does not associate any roots of su(3)

generators so it is a vanishing commutator. One can check this fact to other commutator
relations like (1.4.42).
The final remark of this section is that since the root vectors of su(2) are two-components
vectors, so we can draw the root system of su(2) on the paper as in 1.1:

↵1

↵2↵3

�↵1

�↵2 �↵3

Fig. 1.1. Root system of su(3)

and this is related to the octet diagram of mesons or baryons because SU(3) is the gauge
group of strong interaction and mesons or baryons are representation of SU(3). 3 That is
how Gell-Mann received Nobel Prize in Physics in 1969.

1.4.3 Cartan Subalgebra and Root System

In the following discussions, we will focus on the simple Lie algebras and their represen-
tations. We observed many examples in the previous subsection 1.4.2 and the first step
was finding a maximal set of abelian subalgebra, for example H1 and H2 generators in the
su(3) example. These generators are forming a subalgebra called a Cartan subalgebra

Definition | Cartan subalgebra

h ⇢ g is the Cartan subalgebra of g when
1. the maximal abelian subalgebra of g and
2. any element of h acts diagonally on g, that is, there exists a basis of g, such that adh is
diagonal for 8h 2 h.

In any simple Lie algebra, there exists a Cartan subalgebra. If h = Span{Hi} for i =

1 , . . . , R, than R is called a rank of g, namely, dim h = rank g. For instance, so(3), there
is only one Cartan generator L0 so its rank is 1. Another example is so(1, 3) and we can
choose two generators as Cartan like hso(1,3) = Span{M01 ,M23} so its rank is 2. One

3More precisely, mesons are Goldstone bosons of the spontaneous symmetry breaking of flavour symme-
try SU(3)L ⇥ SU(3)R ! SU(3)
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remark that only for complex Lie algebra, all Cartan subalgebras are equivalent, that is,
they can be conjugated by an automorphism of g.
Let Hi 2 h are Cartan generators and E↵ 2 g/h are remnant generators, or ladder opera-
tors in the previous subsection, then their Lie bracket is given as

[Hi , E↵] = ↵iE↵ , (1.4.44)

where ↵i is called roots of g. Let us look a Lie bracket between two ladder operators
[E↵ , E� ]. Using the Jacobi identity of Lie bracket, one can find

[Hi , [E↵ , E� ]] = [[Hi , E↵] , E� ] + [E↵ , [Hi , E� ]]

= (↵i + �i)[E↵ , E� ] .
(1.4.45)

Here are three different possibilities: If ↵i + �i = 0 then [E↵ , E� ] belongs to the Cartan
subalgebra, while if ↵i + �i 6= 0 then [E↵ , E� ] / E↵+�. Finally, ↵i + �i is not a root, then
[E↵ , E� ] = 0.
From the roots, we can construct the root space g↵

g↵ ⌘ {X 2 g | adhX ⌘ [h ,X] = ↵(h)X , 8h 2 h} . (1.4.46)

Note that ↵(h) is a number depending on the h, so ↵ is an element of dual space of Cartan
subalgebra. Using the root space, we can decompose the Lie algebra

g = h�
M

↵2�
g↵ , (1.4.47)

for a set of all roots �. That is, an element x 2 g will be decomposed as

x = x0 + x
↵(1) + x

↵(2) + · · · , (1.4.48)

where x0 2 h is an Cartan subalgebra element and

x↵ =
dim g↵X

k=1

ckTk
↵ (1.4.49)

for basis of g↵, Tk
↵. When we restrict the Killing form into the Cartan subalgebra, we can

find an isomorphism between h and h⇤, i, explicitly,

i : h ! h⇤

h 7! (h , ·) ,
(1.4.50)

so  plays a similar role with metric tensor gab as in the general relativity.
In the next few paragraph, we will show that i is really an isomorphism between h and
h⇤. From the Cartan criterion,  is a non-degenerated quantity but h is just a subalgebra
so it does not ensure about non-degeneracy of i. Fortunately, we can prove the non-
degeneracy of i from the following properties:
First of all, g↵ and g� are orthogonal with respect to  (i.e. (E↵ , E�) = 0) if ↵+ � 6= 0.
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Proof
([h ,E↵] , E�) + (E↵ , [h ,E� ]) = (↵(h) + �(h))(E↵ , E�)

= (↵i + �i)h
i(E↵ , E�) = 0

(1.4.51)

Ad-invariant property was used in this proof. ⌅
Moreover, g↵ is orthogonal to the Cartan subalgebra h for any non-zero root ↵. It can be
shown with the same argument to the above proof by replacing E↵ to h0 2 h.
Third, h⇥h is non-degenerate.

Proof Since Killing form is non-degenerate, there exists x 2 g such that (h , x) 6= 0. Let
us writing x as

x = xh +
X

↵

x↵ , (1.4.52)

with xh 2 h and x↵ 2 g↵, and using the previous propertiy of Killing form, we deduce that

(h , x) = (h , xh) 6= 0 . (1.4.53)

This implies that there always exists h0 2 h which makes (h , h0) 6= 0, and hence h⇥h is
non-degenerate and (1.4.50) is really an isomorphism. ⌅
In a similar way, g↵⇥g�a is non-degenerate. One can repeat the above proof starting from
existence of y 2 h such that (E↵ , y) 6= 0.
In the Cartan-Weyl basis, the Killing form will be given from the above properties

 =

 
ij 0

0 ↵ �↵+� ,0

!
, (1.4.54)

where ↵ is a constant depending on the root ↵ and ij is the Killing form restricted to h.
In this construction, the isomorphism (1.4.50) will be given

i(h) = ij h
i H̄j , i�1

 (�) = ij �iHj ⌘ H� , (1.4.55)

where H̄ is the dual basis of h, that is, h⇤ = Span
�
H̄ i

 
, and � = �i H̄ i

2 h⇤. Using this
isomorphism, one can define an inner product between two dual vectors of h⇤ like

(� , ⇢) = (i�1
 (�) , i�1

 (⇢)) = ij �i ⇢j , (1.4.56)

and this makes us rewrite the commutator relation between H↵ and E� such that

[H↵ , E� ] = ij ↵i[Hi , E� ] = ij ↵i �j E� = (� ,↵)E� . (1.4.57)

With this inner product on the root space, we can also find the Lie bracket between two
ladder operators with opposite roots

[E↵ , E�a] = (E↵ , E�↵)H↵ , (1.4.58)

where
H↵ ⌘ i�1

 (↵) ⌘ ij ↵iHj 2 g . (1.4.59)
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Moreover, ↵ has a non-vanishing norm, i.e. (↵ ,↵) 6= 0. These statements can be proven
by non-degeneracy of the Killing form and Engel’s theorem. But, here, we skip the proof
of them.
Let us look the properties of the root system without proof.

First, root space g↵ is a one-dimensional Lie algebra.
Second, if ↵ 2 � then there is no n↵ 2 � except n = ±1. From this property, we can
disjoint � into two pieces, � = �+ [ ��, where �+ is a set of roots such that their first
non-vanishing coefficient in a basis is positive and vice versa. Also, we can classify the
generators into three categories: The first category is Hi which spans Cartan subalge-
bra. Other two types of generator exists for each ↵, namely, E↵ and E�↵, usually called
”raising“ and ”lowing“ operators. This basis is called a Cartan-Weyl basis.
Third, there is a positive-definite scalar product on �, that is, (↵ ,↵) > 0 for ↵ 6= 0.
Forth, the root system of g with respect to a Cartan subalgebra h, spans h⇤ the dual
of Cartan subalgebra, namely, SpanC(�) = h⇤. In particular, this implies that card� =

dim h⇤ = dim h. 4

Fifth, the scalar product between two roots is always quotient number, (↵ ,�) 2 Q.
Sixth, If (� ,↵) < 0 then ↵+ � 2 �. On the other hand, � � ↵ 2 � for (� ,↵) > 0.
Seventh, � is spanned by simple roots �s which is a set of positive roots that cannot be
written as the sum of two positive roots. From the fifth property, any root can be written as

↵ =
rX

i=1

ci ↵
(i) , (1.4.60)

where ↵(i) are simple roots and ci 2 Q are coefficients.

From the Seventh property of the simple root, we can define the height of a root:

Definition | Height of a root

The height ht(↵) of a root ↵ 2 � is given as a sum of its coefficient in the basis of simple
roots �s. If ↵ is given as ↵ =

P
r

i=1 ci ↵
(i) then height is defined as

ht(↵) =
rX

i=1

ci . (1.4.61)

Among the positive roots, there is one particular root ⇥ 2 �+, called the highest root of g,
such that ht(⇥) > ht(↵) for all other positive roots ↵. As we will see later, the height of the
highest root gives a characteristic of the algebra. Thus, we define the Coxeter number g
of g as

g ⌘ ht(⇥) + 1 . (1.4.62)

4Since � is a discrete set, the more natural notion for � is the cardinal which represents the number of
elements of �.
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1.4.4 Root String and Its Characteristics

In the last section, we have discussed about root space. To describe root space, Cartan-
Weyl basis is a good choice of the basis for Lie algebra. In this section, we continue the
discussion on the root space to root string and classify the root string which is a stepstone
for simple group classification.

Definition | Root string

Let ↵ ,� 2 � be two roots. The root string S� ,↵ is a set of roots such that

S� ,↵ = {��n� ↵ ,��(n��1)↵ , · · · ,��↵ ,� ,�+↵ , · · ·�+(n+�1)↵ ,�+n+ ↵} , (1.4.63)

for n� , n+ 2 N

The root string satisfies three properties.
First, there is no gap, that is, there is no such situation like { , · · ·� � 2↵ ,� , · · · }.
Second, if we consider coroot, given as

↵_
⌘

2

(↵ ,↵)
↵ , (1.4.64)

then (� ,↵_) = n� � n+.
Third, there are at most four elements in any root string. The last property can be proven
by contradiction.

Proof Obviously, S±↵ ,↵ has no more than four elements, so we exclude these cases in
this proof. Suppose that S� ,↵ has five elements so that S� ,↵ = {��2↵ ,��↵ ,� ,�+↵ ,�+

2↵} up to redefinition. This implies that (� + 2↵) + � = 2 (� + ↵) and (� + 2↵) � � = 2↵

are not roots due to the Second property of the root system in the previous subsection. As
consequence, the root string S�+2↵ ,� only contains one elements so that (�+2↵ ,�_) = 0.
This argument can be applied in a same way to S��2↵ ,� so that (� � 2↵ ,�_) = 0. By
comparing two results, one concludes that (� ,�_) = 0 but this is ridiculous according to
the Third property of the root system in the previous subsection. In conclusion, S±↵ ,↵ has
no more than four elements. ⌅
Forth, there exists a relation between inner products such that

(↵+ � ,↵+ �)

(� ,�)
=

n� + 1

n+
, [(� ,↵_) + 1]


1�

(↵ ,↵)

(� ,�)
n+

�
= 0 . (1.4.65)

except n+ = 1. We will prove this property explicitly.

Since there can be at most four elements in the root string, we can classify all root strings.
Before we start the classification, we can write a Lie bracket in the Cartan-Weyl basis as

[E↵ , E� ] = N↵ ,� E↵+� . (1.4.66)

From the antisymmetric property of Lie bracket,

N↵ ,� = �N� ,↵ (1.4.67)
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Also, from the Jacobi identity,

[E↵ , [E� , E� ]] + [E� , [E� , E↵]] + [E� , [E↵ , E� ]] = 0

= N� ,� [E↵ , E�+� ] +N� ,↵[E� , E�+↵] +N↵ ,� [E� , E↵+� ] .
(1.4.68)

If ↵+ � + � = 0 then (1.4.68) become

N� ,�↵H↵ +N↵ ,�� H� +N� ,↵ � H� = 0 , (1.4.69)

where we used (1.4.58) with ↵ ⌘ (E↵ , E�↵). Moreover, using

H� = i�1
 (�) = i�1

 (�↵� �) = �i�1
 (↵)� i�1

 (�) = �H↵ �H� , (1.4.70)

the Jacobi identity (1.4.69) become

(N� ,� ↵ �N↵ ,� �)H↵ + (N� ,↵ � �N↵ ,� �)H� = 0 , (1.4.71)

which implies
N� ,� ↵ = N� ,↵ � = N↵ ,� � , (1.4.72)

for any root ↵ ,� , � 2 � such that their sum is zero. Next, consider � = �↵ and � = ��k↵

case for k 2 N+, then the Jacobi identity (1.4.68) becomes
�
N↵ ,��k↵N↵ ,��(k+1)↵ + ↵(� � k↵ ,↵) +N��k↵ ,�↵N↵ ,��(k+1)↵

�
E��k↵ = 0 , (1.4.73)

where we used (1.4.57). By using (1.4.67), (1.4.73) becomes

N�↵ ,��k↵N↵ ,��(k+1)↵ = N�↵ ,��(k�1)↵N↵ ,��k↵ +
1

2
↵(↵ ,↵)(� � k↵ ,↵_) . (1.4.74)

Summing the left hand side of the above equation for k = 0 to n�, we obtain

n�X

k=0

N�↵ ,��k↵N↵ ,��(k+1)↵ =

n�X

k=1

N�↵ ,��(k�1)↵N↵ ,��k↵ , (1.4.75)

since ��(n�+1)↵ is not a root as by the definition of the root string. Summing from k = 0

to n�, the second term of the right hand side of (1.4.74) gives

n�X

k=0

(� � k↵ ,↵_) = (n� + 1)(� ,↵_)� n�(n� + 1) = �n+(n� + 1) , (1.4.76)

with the root string property (1.4.64). Combining all results, we can find the the relation
from the Jacobi identity

N↵ ,� N�↵ ,�+↵ =
1

2
↵ (↵ ,↵)n+(n� + 1) . (1.4.77)

From the previous identity (1.4.72), one can show that N�↵ ,↵+� � = N�↵ ,�� ↵+� then
the above relation is rewritten as

N↵ ,� N�↵ ,�� = �
1

2
n+(n� + 1)(↵ ,↵)

↵ �
↵+�

. (1.4.78)
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Using the fourth property of root string (1.4.65), the above relation can be simplified

N↵ ,� N�↵ ,�� = �
1

2
(n� + 1)2

↵ �
↵+�

(↵ ,↵)(� ,�)

(↵+ � ,↵+ �)
. (1.4.79)

This above relation implies a relationship between N↵ ,� and N�↵ ,��.
From the above properties, we can classify the root string. As the consequences of the
second property (1.4.64) and third property, one can show

(� ,↵_) = n� � n+ 2 {0 ,±1 ,±2 ,±3} . (1.4.80)

Let us introduce the angle parameter ✓↵�, defined from the inner product between two
roots:

(↵ ,�) =
p
(↵ ,↵)(� ,�)cos✓↵� , (1.4.81)

so we can rewrite
(� ,↵_)(�_ ,↵) = 4cos2✓↵� = {0 , 1 , 2 , 3} . (1.4.82)

Here, we ignore cos✓↵� = 1 since it is too trivial, that is, ↵ / � so � = ±↵. Then all
possible value of ((� ,↵_) , (�_ ,↵)) is (1 , 2) , (�1 ,�2) , (1 , 3) , (�1 ,�3) and (0 , 0) without
regarding the order. For each pair, the angle ✓↵� can be determined from

(� ,↵_) =
(↵ ,↵)

(� ,�)
(�_ ,↵) . (1.4.83)

While (� ,↵_) = n� � n+ and keeping in mind that n� + n+  3, we can find all possible
root strings as follow table

(� ,↵_) (�_ ,↵) ✓↵�
(↵ ,↵)
(� ,�) (n� , n+)

0 0 ⇡

2 1 (1 , 1)

1 1 ⇡

3 1 (2 , 1) or (1 , 0)
�1 �1 2⇡

3 1 (1 , 2) or (0 , 1)
2 1 ⇡

4
1
2 (2 , 0)

1 2 ⇡

4 2 (2 , 1) or (1 , 0)
�2 �1 3⇡

4
1
2 (0 , 2)

�1 �2 3⇡
4 2 (1 , 2) or (0 , 1)

3 1 ⇡

6
1
3 (3 , 0)

1 3 ⇡

6 3 (2 , 1) or (1 , 0)
-3 -1 5⇡

6
1
3 (0 , 3)

-1 -3 5⇡
6 3 (1 , 2) or (0 , 1)

Table 1.1. All possible non-trivial root strings

One can easily show that the fourth property of the root string (1.4.65) is satisfied from
the Table 1.1 except n+ = 0 cases.
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Now, go back to the structure constant N . The Second property of the root system in the
previous subsection tells us that the root space is invariant under ↵ ! �↵. Let us define
an automorphism ✓ of g which flipping all roots,

✓([x , y]) = [✓(x) , ✓(y)] , ✓(�x+ y) = � ✓(x) + ✓(y) , ✓2 = . (1.4.84)

Let us write the action of ✓ to the generators

✓(E↵) = "↵E�a , ✓(H↵) = ⌘↵H↵ , (1.4.85)

where "↵ and ⌘↵ are numbers depending on the root ↵. From the third condition of ✓ in
(1.4.84), one can find

"↵ "�↵ = 1 , ⌘2↵ = 1 . (1.4.86)

Acting ✓ to the Lie bracket between a ladder operator and Cartan generaotr [H↵ , E� ] =

(� ,↵)E�, then

[H↵ , E�� ] =
1

⌘↵
(� ,↵)E�� . (1.4.87)

Since we require that ✓ should preserve the Lie bracket, we can find ⌘↵ = �1. Applying ✓

to the Lie bracket of two ladder operators E↵ and E� such that ↵+ � 6= 0,

[E�↵ , E�� ] =
"↵+�

"↵ "�
N↵ ,� E�↵�� . (1.4.88)

Again the preservation of the Lie bracket tells us the relation

N�↵ ,�� =
"↵+�

"↵ "�
N↵ ,� . (1.4.89)

Even though there is no further relation between N�↵ ,�� and N↵ ,�, we can fix the structure
constant by imposing all "↵ = 1 or "↵ = �1, that is, N↵ ,� = ±N�↵ ,��. If we choose the
second option and applying it to (1.4.79), then we obtain

N
2
↵ ,�

=
1

2
(n� + 1)2

↵ �
↵+�

(↵ ,↵)(� ,�)

(↵+ � ,↵+ �)
. (1.4.90)

Further simplification is possible by choosing appropriate basis by fixing ↵ for each root
↵. One choice is called the Chevalley basis such that

↵ =
2

(↵ ,↵)
, (1.4.91)

so the structure constant is given as

N↵ ,� = ±(n� + 1) , (1.4.92)

where the sign is depending on the couple of roots ↵ and �.
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1.4.5 Dynkin Diagram

In this section, we will discuss about the Dynkin diagram and classification of the sim-
ple Lie algebras. To construct the Dynkin diagram, we should start from the Cartan ma-
trix which contains all information about the simple Lie algebra, the we will work with
Chevalley-Serre basis which is an adoption of Chevalley basis to the Cartan-Weyl basis.
First of all, the definition of Cartan matrix of g is following:

Definition | Cartan matrix

A Cartan matrix of simple Lie algebra is a r ⇥ r matrix with integer entries and satisfying
following properties:

• Aii = 2, for i = 1 , · · · , r

• Aij 2 Z0, for i , j = 1 , · · · , r with i 6= j

• If Aij = 0, then Aji = 0.

• det A > 0

• A is not block diagonal.

In the following discussions, following explicit form of the Cartan matrix will be used:

Aij = (↵(i)_ ,↵(j)) = 2
(↵(i) ,↵(j))

(↵(i) ,↵(i))
. (1.4.93)

For further convenience, let us denote hi ⌘ H
↵(i)_ , ei ⌘ E

↵(i) , and fi ⌘ E�↵(i) where
{↵(i)

} are the simple roots of the Lie algebra with i = 1 , · · · , r. In this setup, the Lie
algebra between three generators is given as

[hi , hj ] = 0 , [hi , ej ] = Aij ej , [hi , fj ] = �Aij fj , [ei , fj ] = �ij hi . (1.4.94)

There are remnant generators which are not associated with simple roots. Fortunately,
remaining relation can be found from the Serre relation, given as

ad
1�Aij
ei ej = 0 , ad

1�Aij

fi
fj = 0 . (1.4.95)

Through those relations (1.4.94) and (1.4.95), called Chevalley-Serre relation, the struc-
ture of root space is completely understood, that is, Cartan matrix contains enough infor-
mation to understand the simple Lie algebra.
For the Kac-Moody algebra, an infinite-dimensional Lie algebra, relation between gen-
erators are given by the Serre relation and the generalised Cartan matrix, which satis-
fies all properties of the Cartan matrix except the determinant condition, that is, allowing
detA  0 case.
The entire root system can be driven from the positive roots due to the following proposi-
tions:
a: Let P = {↵i} be a set of n positive roots such that (↵k ,↵l)  0 , 8 k 6= l. Then the n

roots of P are linearly independent.
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Proof Suppose that the set of positive roots P are linearly dependent, say,

↵n = � + � , (1.4.96)

with

� =
k�1X

i=1

ci↵i , � =
r�1X

j=k

dj↵j , (1.4.97)

where ci > 0 and dj  0. Since ↵n is a positive root, then � 6= 0. Moreover, the scalar
product between � and � is always positive or zero

(� , �) =
k�1X

i=1

r�1X

j=k

cidj(↵i ,↵j) � 0 , (1.4.98)

from the assumption (ai , aj)  0 for any i 6= j, so

(↵r , �) = (� , �) + (� , �) � 0 . (1.4.99)

On the other hand, the direct calculation of the scalar product is given as

(↵r , �) =
k�1X

i=1

ci(↵r ,↵i)  0 . (1.4.100)

This consistency is originated from the assumption in the beginning. Therefore, the set
P = {↵i} is the set of linearly independent vectors. ⌅
b: If two simple roots are orthogonal, then their sum is not a root, namely, (↵(i) ,↵(j)) = 0

then ↵(i) + ↵(j) /2 �+ for i 6= j.

Proof [[proof]]

c: Let � 2 �+/�s be a positive root which are not simple. Then there exists a simple roots
↵(k)

2 �s such that the difference � � ↵(k) is still a positive root.

Proof [[proof]]

From the proposition c, an important corollary exists:
d: Let � 2 �+ such that ht(�) = n > 1. Then there exists �0

2 �+ with ht(�0) = n� 1 and
a simple root ↵(k)

2 �s such that � = �0 + ↵(k)
2 S

�0 ,↵(k) .
e If �+ does not contain any root of ht = m for some integer m > 1, then there exist no
root of height greater than m at all.

Proof [[proof]]

From a to e, it can be shown that the positive roots provide enough information to recover
whole root system. First, the simple roots are the only roots with the unity height, by
definition.
Second, roots of height two should have the form ↵(i) + ↵(j) for i 6= j. From the Sixth
property in Sec.1.4.3, if scalar product between two roots is negative, then ↵(i)+↵(j)

2 �.
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On the other hand, if scalar product between two roots is vanished, then the sum of two
roots is not a root, from b. In any cases, the Cartan matrix element Aij (or Aji) gives the
criterion.
Third, let us denote a set of roots with height less or equal to n as �+|n. From d, any root
� 2 �+|n is given as � + ↵(k) for a given � 2 �+|n�1 and a simple root ↵(k). Therefore,
to find all roots of �+|n, it is sufficient to compute all possible root strings S

� ,↵(k) for � 2

�+|n�1 and ↵(k)
2 �s. The third procedure can be repeated before reach to the maximal

height. Then all positive roots are obtained and negative roots are easily found as opposite
of the positive roots.
The Cartan matrix gives not only the information for the root system of the group, but
also useful tools for classifying the simple group, which we will see soon, and construction
of the representation, which we will see in the next subsection, Sec. 1.4.6. In the next
subsection, we will revisit this procedure.
A Dynkin diagram is a way to describe the Cartan matrix in a graphical way. A Dynkin
diagram obeys the following rules:

• To each simple root correspond a node in the diagram.

• Only roots with no vanishing scalar product are connected.

• The number of line ` connecting two nodes corresponding to the roots ↵(i) and ↵(j)

encodes the product of two Cartan matrix elements involving, through

` =
4(↵(i) ,↵(i))2

(↵(i) ,↵(j))(↵(j) ,↵(j))
= Aij Aji . (1.4.101)

• If there are more than one line connecting two nodes, an arrow is drawn between
them, from the longer to the shorter root.

For instance, su(3) case, there are two simple roots ↵1 and ↵3, given in 1.1, and the Cartan
matrix is given as

A =

 
2 �1

�1 2

!
, (1.4.102)

and the corresponding diagram can be drawn as following:

Fig. 1.2. Dynkin diagram for A2 = su(3).

All possible simple Lie algebras are classified by Dynkin diagram (or Cartan matrix). Four
classical Lie algebra families, denoted Ar, Br, Cr and Dr are parametrised by r, the rank
of the Lie algebra.

Ar

Br

Cr

Dr

(1.4.103)
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which corresponding to su(r + 1), so(2r + 1), sp(2r ,R) and so(2r), respectively 5. Also,
there are five exceptional Lie algebras, denoted as E6 , E7 , E8 , F4, and G2.

E6

E7

E8

F4

G2

(1.4.104)

Note that one can easily find the following isomorphisms between Lie algebras from the
Dynkin diagram:

• A1 ' B1 ' C1

• B2 ' C2

• D2 ' A1 ⇥A1

• D3 ' A3

• E3 ' A1 ⇥A2

• E4 ' A4

• E5 ' D5

1.4.6 Weight and Highest Weight

One usual way to construct them is called the highest weight representation which is
partially discussed in the Subsection 1.4.2. Through the following three subsections, we
will discuss about the highest weight representation and their classification. Here, we will
mainly introduce a concept of weights and highest weight and discuss about their proper-
ties.
Let us suppose to be V is a g-module of representation ⇢ which basis is chosen as ⇢(H↵)

acts diagonally, say,
⇢(H↵) v

a = �a

i v
a , (1.4.105)

where va is a component of v 2 V . Let h =
P

i
ciH↵ 2 h and once ⇢(h) is acted on va

then one can find

⇢(h) va =

 
X

i

ci �
a

i

!
�a . (1.4.106)

From this relation, a quantity W 2 h⇤ can be defined as

W a

 
X

i

ci hi

!
=
X

i

ci �
a

i , (1.4.107)

5More precisely, this classification can be applied to the complex Lie algebra. For complex Lie algebra,
Ar ' slC r + 1 , Br ' soC 2r + 1 , Cr ' spC 2r , and Dr ' soC 2r.
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which is called weight vectors. In other words, the weight is the eigenvalue of a vector in
the module with respect to the Cartan subalgebra element. Recall the Subsection 1.4.3,
the root vectors ↵ are also dual vector of the Cartan subalgebra. In fact, the root vectors
are a special case of weight vectors associated with the adjoint representation. Similarly
to the root system, the weight space V↵ ⇢ V can be constructed as

VW ⌘ {v 2 V | ⇢(h) v = W (h) v , 8h 2 h} , (1.4.108)

and weight vectors decompose the vector module V , such that

V =
M

W

VW . (1.4.109)

Again, W can be regarded as a vector of h⇤.
We observed the construction of su(2) Lie algebra using the raising and lowing operators
J+ and J�. It can be generalised by the weight. Let va 2 V is a g-module of representation
⇢ and W a is a weight vector associate with the vector va. Then weight of new vector
⇢(E↵) va is measured by acting ⇢(h) to it, that is,

⇢(h)E↵ v
a = (⇢(E↵) ⇢(h) + ↵(h) ⇢(Ea)) v

a

= (W a(h) + ↵(h)) ⇢(Ea) v
a ,

(1.4.110)

which implies that ⇢(E↵) va has the weight W a + ↵ if ⇢(E↵) va 6= 0. In this sense, E↵ and
E�↵ are regarded as raising and lowering operators, respectively.
For root vectors, a root string (1.4.63) has been considered in the subsection 1.4.4 and
here a weight string can be considered as

{W ⇤ ,W ⇤
� ↵ , · · · ,W ⇤

� n↵} , (1.4.111)

Let v0 is a vector with weight W ⇤ then vj ⌘ (⇢(E�↵))j v0 should be a vector with weight
W ⇤

� j ↵. When we demand that the weight string is finished for W ⇤
� n↵, then

⇢(E�a) vn
!
= 0 . (1.4.112)

To find n, first let us consider a vector ⇢(E↵) vk = rk vk�1 then one can find

⇢(E↵) vk = rk vk�1

= ⇢(E↵) ⇢(E�a) vk�1

= (⇢(E�↵) ⇢(E↵) + ↵ ⇢(H↵)) vk�1

= rk�1 vk�1 + ↵ [(W
⇤,↵)� (k � 1)(↵ ,↵)] v�1

= [rk�1 + ↵ ((W
⇤,↵)� (k � 1)(↵ ,↵))] v�1 .

(1.4.113)

where we used (1.4.58) and the notation (1.4.56). Once we impose r0 = 0 then we find

rk = ↵ (k (W
⇤,↵)�

1

2
k(k � 1)(↵ ,↵)) . (1.4.114)
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The condition (1.4.112) says that ⇢(E↵) ⇢(E�↵) vn = rn+1 vq = 0, and, as consequences,
the length of weight string n is given as

n =
2(W ⇤,↵)

(↵ ,↵)
. (1.4.115)

In the weight string, there exists a hidden symmetry, called Weyl reflection S↵, given as

S↵ : W ! W 0 = W �
2(W,↵)

(↵ ,↵)
↵ , (1.4.116)

and a set S↵ forms a group, called the Weyl group W. Geometrically speaking, the Weyl
reflection S↵ is a reflection in the weight space with respect to the hyperplane orthogonal
to the ↵. In the su(3) root space Fig.1.3, for instance, the Weyl reflections are denoted as
dashed lines. The dashed line on the y-axis is corresponding to the Weyl reflection S↵1 ,
and so on. One comment of this geometrical interpretation is that an isolated region gen-
erated by the hyperplanes is called the Weyl chamber. For instance, in 1.3, six triangular
regions divided by dashed lines correspond to the Weyl chamber.

↵1

↵2↵3

�↵1

�↵2 �↵3

Fig. 1.3. Weyl reflection in root system of su(3)

Now we will discuss about the highest weight representation. The starting point is, of
course, the highest weight vector.

Definition | Highest weight vector

Let V suppose to a g-module and ⇢ supposed to be a representation. A non-zero vector
v 2 V is called a highest weight vector if it is an eigenvector of ⇢(h) and it is in the kernel
of ⇢(X), where X 2 g↵2�+ .

In other words, highest weight vector is a weight vector which is vanished by all raising
operators. For example, su(2) case, the state |j, ji is the highest vector. There are three
propositions about the representation of semisimple Lie algebra g and its highest weight
vector. We show these propositions without proof.
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(i): Every finite-dimensional g-module V possesses a highest weight vector.
(ii): The subspace W ⇢ V generated by the images of a highest weight vector v under
successive applications of ⇢(X) where X 2 g↵2�� is a g-module of irreducible subrepre-
sentation.
(iii): An irreducible representation possesses a unique highest weight vector up to scalars.

Proposition (i)-(iii) tell us a way to construct irreducible representation from the highest
weight vector. From the Seventh property of the root system in the Sec.1.4.3, only the
negative simple roots are enough to construct whole irreducible representation. So, any
g-module V of irreducible representation ⇢ is generated by the images of its highest weight
vector v successive application of ⇢(X) where X 2 g↵2��s .
As we saw in (1.4.115), the norm between the weight W and the root ↵ is an important
quantity. Also, it implies that the basis of the weight vectors can be given as the dual basis
of the ↵_, namely,

W =
rX

i=1

wiW(i) , (1.4.117)

where W(i) is the basis of the weight vector, called the fundamental weight, satisfying

(W(i) ,↵
(j)_) = �j

i
, (1.4.118)

and W i is the number which is called the Dynkin coefficient or Dynkin label and given
as

wi = 2
(W ,↵i)

(↵i ,↵i)
, (1.4.119)

Through the Dynkin label, all weights can be expressed as the linear combination of roots
from the Cartan matrix, so all irreducible representations can be analysed by the Dynkin
label. Luckily, the following theorem also can help to construct the highest weight repre-
sentation.

Theorem | Dynkin label of highest weight

For every irreducible representation, the highest weight W can be written as

⇤ =
rX

i=1

wiW(i) , (1.4.120)

where wi
2 Z�0. In addition, there exists an irreducible representation with highest weight

given by (1.4.120).

We accept this theorem without any proof. By the proposition (iii), this representation is
unique. This implies that one can construct irreducible representation by taking any Dynkin
label with positive integer value.
Also, the dimension of representation is given by the Weyl’s dimensionality fomula:

dim ⇢ =
Y

↵2�+

(W + ⇤,↵)

(⇤ ,↵)
, (1.4.121)



30 CHAPTER 1. FOUNDATION OF PHYSICS

where vector ⇤ is called the Weyl vector and given as

⇤ =
X

i

W(i) . (1.4.122)

Let us look at the representations of A2 ' su(3) 6. From the Cartan matrix (1.4.102), the
fundamental weights are given as

W(1) =
2

3
↵(1) +

1

3
↵(2) , W(2) =

1

3
↵(1) +

2

3
↵(2) . (1.4.123)

Using the root system (1.4.43), the simple roots and the fundamental weights are given
by

↵(1) = (1, 0) , ↵(2) = (�
1

2
,

p
3

2
) ,

W(1) = (
1

2
,

p
3

6
) , W(2) = (0 ,

p
3

3
) .

(1.4.124)

One of the most simplest representation of A2 is given by the highest weight:

1 0

Since the first component is positive, ⇢(E�↵1) should be acted to the highest weight and
we obtain the weight:

�1 1

Again, the second Dynkin label is positive, and the vector with lower weight can be ob-
tained by acting ⇢(E�↵2):

0 � 1

In this weight, there is no positive Dynkin label. This facts implies that this weight is the
lowest weight, so we stop here. Finally three-dimensional representation has been found:

1 0

�1 1

0 � 1

We can check the Weyl’s dimensionality formula (1.4.121) in this case. Actually, one can
find a dimensionality formula for su(3) representation.

Exercise 2| Dimensionality formula for su(3) .
Show that the dimensionality formula for su(3) can be given as

dim ⇢(w1 ,w2) =
1

2
(w1 + 1)(w2 + 1)(w1 + w2 + 2) , (1.4.125)

6We changed the notation for the root as ↵3 = ↵(2) for the convenience. In this notation, ↵2 = ↵(1) +↵(2).
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where ⇢(w1 ,w2) is the irreducible representation with the highest weight (w1 , w2).

In physics, the highest weight representations are appeared in many places. The first
example is the angular momentum states in the quantum mechanics. Another crucial ap-
plication is the Verma module in the conformal field theory. Since the isometry of the
conformal field theory, SO(2, d) for d-dimensional CFT, is non-compact group, there is
no finite dimensional unitary irreducible representation. Despite of absence of the finite-
dimensional representation, a vector module of so(2, d) can be constructed in a similar
way. This vector module is called the Verma module. To construct the Verma module,
so(2, d) is decomposed into the maximal compact subalgebras so(2)� so(d), spanned by
D and Jij , respectively, and consider a highest or lowest weight vector |�, vi where � is
eigenvalue for D operator and v carries Jij representation index. In this construction, an
infinite-dimensional vector module can be construct using the techniques as we explained.
To see more details, please see Chap. 8.

1.4.7 Casimir Operator

So far, we have discussed about how can we construct the irreducible representations of
semisimple groups. For several reasons, it is necessary to distinguish those representa-
tions. For instance, quantum fields (or particles) in Minkowski spacetime are irreducible
representation of the Poincaré algebra iso(1, d � 1). How can we distinguish them each
other? The answer is simple: mass and spin. Mathematically speaking, the mass and the
spin of the fields are given from the Casimir operator of the iso(1, d� 1), as we will see in
Sec. 1.4.9.
The Casimir operator (sometimes called Casimir element or Casimir invariant). can
be defined in the universal enveloping algebra.

Definition | Universal enveloping algebra

A universal enveloping algebra U for the Lie algebra g is written as

U(g) ⌘ T (g)/I , (1.4.126)

where T is referred by the tensor algebra, given as

T (g) ⌘
1M

k=0

g⌦k , (1.4.127)

and I is the ideal of T (g) such that

I = {X ⌦ Y � Y ⌦X � [X ,Y ]} , (1.4.128)

for X ,Y 2 g.

For example, let us consider g = su(2) = Span {Jz , J+ , J�}. Since g is a vector space,
new vectors obtained from the linear combinations of the generators, e.g., Jz+3J++2J�,
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is also an element of g. On the other hand, multiplied quantities such as J2
z , is not an

element of g because the only the multiplication between two Lie algebra element is given
by the Lie bracket. But the universal enveloping algebra provides “usual” notion of the
multiplication as the tensor product, that is, J2

z 2 T (su(2)). In addition, I implements the
Lie bracket of g in T (g), so two elements of T (g) are equivalent up to I.
Now we define the Casimir operator.

Definition | Casimir operator

A (quadratic) Casimir operator C2 2 U(g) is defined as

C2 ⌘ ab Ta Tb , (1.4.129)

where Ta is a generator of g and ab is the Killing form of g.

From this definition, one can easily prove that C2 is commuting with all other generators,
namely, [C2 , Ta] = 0 , 8Ta. This property is valuable due to the Schur’s lemma.
Lemma: Any intertwining operator between two irreducible representation ⇢V on V and
⇢W on W is either 0 or invertible.

Proof First an intertwining operator � : V ! W satisfies

� · ⇢V = ⇢W · � . (1.4.130)

In other word, for v 2 V and X 2 g,

�(⇢V (X) · v) = ⇢W (X) · �(v) . (1.4.131)

From this definition, Ker� is an invariant subspace of V since ⇢V (X) ·v belong to Ker� for
v 2 Ker�. Moreover, Im� is an invariant subspace of W . But we assume the irreducibility
of V and W , so there are only two options: Ker� = {0} and Im� = W , or Ker� = V and
Im� = {0} First, Ker� = {0} and Im� = W . This implies that � is an invertible map, so
that it is an isomorphism. On the other hand, when Ker� = V and Im� = {0}, then � is
zero map. ⌅
As consequences of Schur’s lemma, discussed in Sec.1.3, C2 is proportional to the iden-
tity on an irreducible representation of g. We will show this statement. For an irreducible
represnetastion ⇢ with V , ⇢(C2) satisfies

[⇢(C2) , ⇢(X)] = 0 , 8X 2 g . (1.4.132)

Rephrasing the left-handed side as the commutator, we find

⇢(C2) · ⇢(X) = ⇢(X) · ⇢(C2) , (1.4.133)

and this implies that ⇢(C2) is an intertwiner between V and V . If ⇢(C2) has an eigenvalue
�,

⇢(C2)� � (1.4.134)
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is still an intertwiner. But clearly, it is not invertible, so it is not an intertwiner unless it is
a zero map. So, ⇢(C2) = � . Since the Casimir operator is proportional to the identity in
a certain irreducible representation, irreducible representations can be distinguished from
the value of the Casimir operator �.
Note that a highest weight representation can be understood from the universal enveloping
algebra. Let v� suppose to be a highest weight vector, that is, it satisfies

⇢(E↵) vl = 0 ,↵ 2 �+ , ⇢(H↵) v� = (↵ ,�) v� , (1.4.135)

then we can find string of the vectors V�, given as

V� = {⇢n↵1 (E�↵1) ⇢
n↵2 (E�↵2) · · · ⇢

n↵r (E�↵r) v�} , (1.4.136)

where n↵k 2 N and ↵i 2 �+. This string of vectors is obviously given as the tensor product
of the universal enveloping algebra and the highest weight vector, namely,

V� ' U(n�)⌦ v� , (1.4.137)

where n� is the sum of root spaces with negative roots,

n� =
M

↵2��

g↵ . (1.4.138)

If you want to study more applications of the universal enveloping algebra, please see [7].

1.4.8 Young Diagram

1.4.9 Representation Theory of Poincaré Group
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